Sphere packings revisited

نویسنده

  • Károly Bezdek
چکیده

In this paper we survey most of the recent and often surprising results on packings of congruent spheres in d-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings and the combinatorial Kepler problem; Isoperimetric problems for Voronoi cells, the strong dodecahedral conjecture and the truncated octahedral conjecture; The strong Kepler conjecture; Bounds on the density of sphere packings in higher dimensions; Solidity and uniform stability. Each topic is discussed in details along with some of the ”most wanted” research problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Doubling, Double-circulants, and New Sphere Packings

New nonlattice sphere packings in dimensions 20, 22, and 44–47 that are denser than the best previously known sphere packings were recently discovered. We extend these results, showing that the density of many sphere packings in dimensions just below a power of 2 can be doubled using orthogonal binary codes. This produces new dense sphere packings in Rn for n = 25, 26, . . . , 31 and 55, 56, . ...

متن کامل

Phase diagram and structural diversity of the densest binary sphere packings.

The densest binary sphere packings have historically been very difficult to determine. The only rigorously known packings in the α-x plane of sphere radius ratio α and relative concentration x are at the Kepler limit α=1, where packings are monodisperse. Utilizing an implementation of the Torquato-Jiao sphere-packing algorithm [S. Torquato and Y. Jiao, Phys. Rev. E 82, 061302 (2010)], we presen...

متن کامل

Sphere Packings and Error-correcting Codes

Error-correcting codes are used in several constructions for packings of equal spheres in ^-dimensional Euclidean spaces E. These include a systematic derivation of many of the best sphere packings known, and construction of new packings in dimensions 9-15, 36, 40, 48, 60, and 2 for m g 6. Most of the new packings are nonlattice packings. These new packings increase the previously greatest know...

متن کامل

Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations.

In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding sta...

متن کامل

Deriving Finite Sphere Packings

Sphere packing problems have a rich history in both mathematics and physics; yet, relatively few analytical analyses of sphere packings exist, and answers to seemingly simple questions are unknown. Here, we present an analytical method for deriving all packings of n spheres in R3 satisfying minimal rigidity constraints (≥ 3 contacts per sphere and ≥ 3n− 6 total contacts). We derive such packing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2006